Using a technique that models interactions between drugs and target proteins using natural language, researchers have achieved up to 97% accuracy in identifying promising drug candidates

Developing life-saving drugs can take billions of dollars and decades of time, but University of Central Florida researchers aim to speed up that process with a new artificial intelligence-based drug screening process they’ve developed .

Using a method that models interactions between drugs and target proteins using natural language processing techniques, researchers have achieved up to 97% accuracy in identifying promising drug candidates. The results were recently published in the journal Bioinformatics Briefings.

The technique represents drug-protein interactions through words for each protein binding site and uses deep learning to extract the features that govern the complex interactions between the two.

“With AI becoming more available, it’s become something that AI can tackle,” says study co-author Ozlem Garibay, assistant professor in the Department of Industrial Engineering and Management Systems. of UCF. “You can try many variations of proteins and drug interactions and find out which ones are most likely to bind or not. »

The model they developed, known as AttentionSiteDTI, is the first to be interpretable using the language of protein binding sites.

The work is important because it will help drug designers identify critical protein-binding sites and their functional properties, which is critical in determining whether a drug will be effective.

The researchers achieved this feat by designing a self-attention mechanism that allows the model to learn which parts of the protein interact with drug compounds, while achieving peak prediction performance.

The mechanism’s self-attention ability works by selectively focusing on the most relevant parts of the protein.

The researchers validated their model using lab experiments that measured the binding interactions between compounds and proteins, then compared the results with those their model predicted computationally. As drugs to treat COVID are still of interest, the experiments also included the testing and validation of drug compounds that would bind to a spike protein of the SARS-CoV2 virus.

See also  SC is the 2nd state with the most cases of skin cancer; understand the reasons | WH3 - System 103 - Light Ray Radio - Leader Radio

Garibay says the high agreement between lab results and computational predictions illustrates the potential of AttentionSiteDTI to prescreen potentially effective drug compounds and accelerate the exploration of new drugs and the repurposing of existing ones.

“This high-impact research was only possible through an interdisciplinary collaboration between materials engineering and AI/ML and computer scientists to address the COVID-related discovery,” says co-author Sudipta Seal. of the study and chair of the Department of Materials Science and Engineering at UCF.

Mehdi Yazdani-Jahromi, a doctoral student in UCF’s College of Engineering and Computer Science and lead author of the study, says the work introduces a new direction in pre-drug screening.

“This allows researchers to use AI to identify drugs more accurately to respond quickly to new diseases,” says Yazdani-Jahromi. “This method also allows researchers to identify the best binding site of a viral protein to focus on in drug design. »

“The next step in our research will be to design new drugs using the power of AI,” he says. “That can naturally be the next step in preparing for a pandemic. »

The research was funded by UCF’s internal AI and Big Data funding program.

The study’s co-authors also included Niloofar Yousefi, a postdoctoral researcher associated with the UCF Complex Adaptive Systems Laboratory in the UCF College of Engineering and Computer Science; Aida Tayebi, PhD student in the Department of Industrial Engineering and Management Systems at UCF; Elayaraja Kolanthai, postdoctoral research associate in the Department of Materials Science and Engineering at UCF; and Craig Neal, postdoctoral fellow in UCF’s Department of Materials Science and Engineering.

See also  Love, Glory and Beauty - Top Models, episode broadcast on July 5, 2022 on cbs in the USA

Garibay received her doctorate in computer science from UCF and joined the Department of Industrial Engineering and Management Systems at UCF, part of the College of Engineering and Computer Science, in 2020. Previously, she worked for 16 years in information technology for the Office of Research at UCF.

Source of the story:

Materials provided by University of Central Florida. Original written by Robert Wells. Note: Content may be edited for style and length.

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.